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Figure 1. We innovate DepthCrafter, a novel video depth estimation approach, by leveraging video diffusion models. It can generate
temporally consistent long depth sequences with fine-grained details for open-world videos, without requiring additional information such
as camera poses or optical flow.

Abstract

Despite significant advancements in monocular depth es-
timation for static images, estimating video depth in the
open world remains challenging, since open-world videos
are extremely diverse in content, motion, camera move-
ment, and length. We present DepthCrafter, an innovative
method for generating temporally consistent long depth se-
quences with intricate details for open-world videos, with-
out requiring any supplementary information such as cam-
era poses or optical flow. DepthCrafter achieves general-
ization ability to open-world videos by training a video-
to-depth model from a pre-trained image-to-video diffusion
model, through our meticulously designed three-stage train-

* Joint first authors.
† Corresponding authors.

ing strategy with the compiled paired video-depth datasets.
Our training approach enables the model to generate depth
sequences with variable lengths at one time, up to 110
frames, and harvest both precise depth details and rich
content diversity from realistic and synthetic datasets. We
also propose an inference strategy that processes extremely
long videos through segment-wise estimation and seamless
stitching. Comprehensive evaluations on multiple datasets
reveal that DepthCrafter achieves state-of-the-art perfor-
mance in open-world video depth estimation under zero-
shot settings. Furthermore, DepthCrafter facilitates vari-
ous downstream applications, including depth-based visual
effects and conditional video generation.
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1. Introduction
Depth estimation from monocular images or videos, serving
as the bridge linking 2D observations and the 3D world, has
been a long-standing fundamental problem in computer vi-
sion. It plays a crucial role in a wide range of downstream
applications, such as mixed reality, AI-generated content,
autonomous driving, and robotics [13, 24, 26, 27, 40, 56,
72]. The inherent ambiguity makes it extremely challeng-
ing, as the observed information from a single view is in-
sufficient to determine the depth of a scene uniquely.

With recent advances in foundation models, we have
witnessed significant progress in depth estimation from
monocular images [12, 17, 32, 42, 67, 68]. However, all
these methods are tailored for static images, without con-
sidering the temporal information in videos. Temporal in-
consistency, or flickering, would be observed when directly
applying them to videos, as shown in Fig. 1. Native video
depth estimation methods [35, 41, 57, 63, 76] typically op-
timize a temporally consistent depth sequence in 3D space
from a pre-trained image depth model, with a given or learn-
able calibrated camera poses. Their performance is sensi-
tive to both the proportion of dynamic content and the qual-
ity of the camera poses. Yet, videos in the open world are
diverse in content, motion, camera movement, and length,
making these methods hard to perform well in practice.
Moreover, the required camera poses are often non-trivial
to obtain in open-world videos, particularly for long videos
and videos with abundant dynamic content.

In this paper, we aim to generate temporally consistent
long depth sequences with high-fidelity details for open-
world videos, without requiring any additional informa-
tion, e.g., camera poses, optical flow, etc. Observing the
strong capability of diffusion models in generating various
types of videos [3–5, 7, 8, 23, 64, 65], we propose a novel
approach, named DepthCrafter, to leverage the video dif-
fusion model for video depth estimation, while maintain-
ing the generalization ability to open-world videos. We
train our DepthCrafter, a video-to-depth model, from a pre-
trained image-to-video diffusion model, using our com-
piled paired video-depth datasets, which are in two styles,
i.e. realistic and synthetic, where the realistic dataset pro-
vides rich content diversity and the synthetic dataset offers
precise depth details. On the aspect of temporal context,
existing video diffusion models can only produce a fixed
and small number of frames at a time, e.g., 25 frames in
SVD [3]. However, this is often too short for open-world
video depth estimation to accurately arrange depth distribu-
tions throughout the video. Considering both the respective
advantages of the two-styled datasets and the requirement
of variable long temporal context, we present a three-stage
training strategy to progressively train certain layers of the
diffusion model on different datasets with variable lengths.
By doing so, we can adapt the diffusion model to gener-

ate depth sequences with variable lengths at one time, up to
110 frames, and harvest both the precise depth details and
rich content diversity. To further enable estimating depth
sequences for extremely long videos in the open world, we
design an inference strategy to process the video in over-
lapped segments and seamlessly stitch them together.

We extensively evaluate our DepthCrafter on multi-
ple datasets under zero-shot settings. Both qualitative
and quantitative results demonstrate that our DepthCrafter
achieves state-of-the-art performance in open-world video
depth estimation, outperforming existing methods by
a large margin. Besides, we demonstrate that our
DepthCrafter facilitates various downstream applications,
including depth-based visual effects and conditional video
generation. Our contributions can be summarized below:
• We innovate DepthCrafter, a novel method to generate

temporally consistent long depth sequences with fine-
grained details for open-world videos, outperforming ex-
isting approaches by a large margin.

• We present a three-stage training strategy to enable gener-
ating depth sequences with a long and variable temporal
context, up to 110 frames. It also allows us to harvest
both the precise depth details and rich content diversity
from synthetic and realistic datasets.

• We design an inference strategy to segment-wisely pro-
cess videos beyond 110 frames and seamlessly stitch
them together, enabling depth estimation for extremely
long videos.

2. Related Work

Monocular depth estimation. Deep neural networks have
dominated monocular depth estimation [1, 14, 16, 36, 38,
44, 66] for their superior performance. Nevertheless, the
generalization ability to diverse open-world scenes is chal-
lenging due to the limited training data. To this end, Mi-
DaS [48] presents an affine-invariant loss for training on
mixed datasets. Depth-Anything (V2) [67, 68] followed
this idea and proposed to train the model on both labeled
and large-scale unlabeled images, achieving good general-
ization ability. Marigold [32] and GeoWizard [17] leverage
the diffusion priors to realize zero-shot transfer to unseen
datasets. Besides, a stream of methods focus on estimat-
ing metric depth, such as ZoeDepth [2], UniDepth [46], and
Metric3D [71]. However, all these methods are tailored for
static images, while our work aims to estimate temporally
consistent depth sequences from open-world videos.

Video depth estimation. Compared to single-image depth
estimation, video depth additionally requires temporal con-
sistency. Existing methods could be categorized into two
classes: test-time optimization and feed-forward prediction.
Test-time optimization methods [10, 35, 41, 76] involve
an optimization procedure for each video during inference,
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Figure 2. Overview of our DepthCrafter. It is a conditional diffusion model that models the distribution p(d |v) over the depth sequence
d conditioned on the input video v. We train the model in three stages, where the spatial or temporal layers of the diffusion model are
progressively learned on our compiled realistic or synthetic datasets with variable lengths T . During inference, given an open-world video,
it can generate temporally consistent long depth sequences with fine-grained details for the entire video from initialized Gaussian noise,
without requiring any supplementary information, such as camera poses or optical flow.

typically requiring camera poses or optical flow. This type
of method usually can produce consistent video depth, but
the required camera poses may limit their applicability to
open-world videos. Feed-forward prediction methods di-
rectly predict depth sequences from videos [39, 57, 59, 60,
63, 69, 70, 73], e.g., DeepV2D [57] combines camera mo-
tion estimation with depth estimation, MAMO [69] lever-
ages memory attention, and NVDS [63] introduces a plug-
and-play stabilization network. However, due to the limited
training data and model capacity, these methods often fail
to address the in-the-wild videos with diverse content. By
leveraging video diffusion priors and our designed three-
stage training strategy, our method demonstrates the ability
to perform open-world video depth estimation.

Video diffusion models. Diffusion models [21, 55] have
achieved high-fidelity image generation results from text
descriptions benefiting from web-scale aligned image-text
datasets. Consequently, these models have been extended
to generating videos of various types from text or im-
ages [3, 5, 7, 22, 23, 28, 61, 64, 65, 77]. Among these meth-
ods, VDM [23] presents the first results on video generation
using diffusion models, while Sora [5] has shown remark-
able results in this area. SVD [3] provides the popular open-
source pre-trained models for image-to-video. Trained on a
well-curated video dataset, SVD can generate high-quality
videos and is used as the model prior for various video-
related tasks. In this paper, we leverage the video diffu-
sion model for high-fidelity consistent video depth estima-
tion by taking the input video as the condition. Concur-
rent to our work, ChronoDepth [53] also explores video
depth estimation with video diffusion priors. However,
ChronoDepth only supports a short temporal context, i.e.
10 frames, which is insufficient to accurately arrange depth
distributions throughout the video. In contrast, our method
not only supports variable-length temporal context, up to

110 frames, but also can estimate depth sequences for ex-
tremely long videos.

3. Method

Given an open-world video, v ∈ RT×H×W×3, our goal
is to estimate temporally consistent depth sequences, d ∈
RT×H×W , with fine-grained details. Considering the di-
versity of open-world videos in content, motion, camera
movement, and length, the challenges to achieving our goal
are threefold: 1.) a comprehensive understanding of video
content for generalization ability; 2.) a long and vari-
able temporal context to arrange the entire depth distri-
butions accurately and keep temporal consistency; and 3.)
the ability to process extremely long videos. As shown
in Fig. 2, we tackle these challenges by formulating the
video depth estimation as a conditional diffusion genera-
tion problem to model the conditional distribution p(d |v),
training a video-to-depth model from a pre-trained image-
to-video diffusion model through a meticulously designed
three-stage training strategy with compiled paired video-
depth datasets, and crafting an inference strategy to pro-
cess extremely long videos through segment-wise estima-
tion and seamless stitching.

3.1. Preliminaries of Video Diffusion Models

Diffusion models [21, 55] learn the data distribution p(x) by
a forward diffusion process to gradually noise the data to a
target distribution, e.g. the Gaussian distribution, and a re-
verse denoising process to iteratively recover the data from
the noise by a learned denoiser. In this paper, our study
is conducted based on the stale video diffusion (SVD) [3],
which is a famous open-source video diffusion model. SVD
adopts the EDM-framework [31] for the noise schedule and
denoising process. The diffusion process is achieved by
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adding i.i.d. σ2
t -variance Gaussian noise to the data x0 ∼

p(x):
xt = x0 + σ2

t ϵ, ϵ ∼ N
(
0, I

)
, (1)

where xt ∼ p(x;σt) is the data with noise level σt. When
σt is large enough (σmax), the distribution would be indis-
tinguishable from the Gaussian distribution. Based on this
fact, the diffusion model starts from a high-variance Gaus-
sian noise ϵ ∼ N

(
0, σ2

maxI
)

and gradually denoises it to-
wards σ0 = 0 to generate the data. The denoiser Dθ is a
learnable function that tries to predict the clean data, i.e.
x̃0 = Dθ

(
xt;σt

)
. Its training objective is the denoising

score matching:

Ext∼p(x;σt),σt∼p(σ)

[
λσt

∥∥∥∥Dθ

(
xt;σt; c

)
− x0

∥∥∥∥2
2

]
, (2)

where p(σ) is the noise level distribution during training, c
denotes the conditioning information, and λσt

is the weight
for the denoising loss at time t. To promote the learning,
EDM adopts the preconditioning strategy [31, 52], to pa-
rameterize the denoiser Dθ as:

Dθ

(
xt;σt; c

)
=

cskip(σt)xt + cout(σt)Fθ

(
cinxt; cnoise(σt); c

)
,

(3)

where Fθ is implemented as a learnable U-Net [51], and cin,
cout, cskip, and cnoise are preconditioning functions.

3.2. Formulation with Diffusion Models

Latent space transformation. To generate high-resolution
depth sequences without sacrificing computational effi-
ciency, we adopt the framework of Latent Diffusion Mod-
els (LDMs) [50] that perform in a low-dimensional latent
space, rather than the original data space. The transfor-
mation between the latent and data spaces is achieved by
a Variational Autoencoder (VAE) [33], which was origi-
nally designed for encoding and decoding video frames in
SVD [3]. Fortunately, we found it can be directly used for
depth sequences with only a negligible reconstruction error,
which is similar to the observation in Marigold [32] for im-
age depth estimation. As shown in Fig. 2, the latent space
transformation is formulated as:

z(x) = E(x), x̂ = D
(
z(x)

)
, (4)

where x is either the video v or the depth sequence d, z(x)

is the latent representation of the data, x̂ is the reconstructed
data, E and D are encoder and decoder of the VAE, respec-
tively. For the depth sequence, we replicate it three times to
meet the 3-channel input format of the encoder in VAE and
average the three channels of the decoder output to obtain
the final latent of the depth sequence. Following the prac-
tice in image depth estimation [32, 48, 49, 67, 68], we adopt
the relative depth, i.e. the affine-invariant depth, which is

normalized to [0, 1]. But differently, our predicted depth se-
quence shares the same scale and shift across frames, rather
than a per-frame normalization, which is crucial for main-
taining temporal consistency.
Conditioning on the video. SVD is an image-to-video dif-
fusion model that generates videos conditioned on a single
image. The conditional image is fed into the U-Net in two
ways, i.e., concatenating its latent to the input latent, and
injecting its CLIP [47] embedding to the intermediate fea-
tures via cross-attention. Yet, our DepthCrafter involves the
generation of depth sequences conditioned on video frames
in a frame-to-frame fashion. Therefore, we adapt the condi-
tioning mechanism in SVD to meet our video-to-depth gen-
eration task. As shown in Fig. 2, given the encoded latent of
depth sequence z(d) and video frames z(v) from Eq. (4), we
concatenate the video latent to the input noisy depth latent
frame-wisely, rather than only the first frame, to condition
the denoiser for generating the depth sequence. For high-
level semantic information, we embed the video frames us-
ing CLIP and then inject the embeddings in a frame-to-
frame manner to the denoiser via cross-attention. Compared
to the original conditioning mechanism, our adapted condi-
tioning provides more comprehensive information from the
video frames to the denoiser, which significantly improves
the alignment between the generated depth sequences and
the video content, as well as the temporal consistency.

3.3. Training

To train our DepthCrafter, we need a large amount of high-
quality paired video-depth sequences. Although there are
several video depth datasets available, e.g., KITTI [18],
Scannet [11], VDW [62], DynamicReplica [30], and Ma-
trixCity [37], they are either lacking high-quality depth an-
notations or restricted to a specific domain, e.g., driving
scenes, indoor scenes, or synthetic scenes.
Dataset construction. To this end, we compiled paired
datasets of two styles, i.e. realistic and synthetic, where
the realistic dataset is large-scale and diverse, while the
synthetic dataset is miniature but fine-grained and accu-
rate. The realistic dataset is constructed from a large num-
ber of binocular videos with a wide range of scene and
motion diversity. We cut the videos according to scene
changes, and apply the state-of-the-art video stereo match-
ing method, e.g., BiDAStereo [29], to generate temporally
consistent depth sequences. Finally, we obtained ∼200K
paired video-depth sequences with the length of 50 − 200
frames. The synthetic dataset is a combination of the Dy-
namicReplica [30] and MatrixCity [37] datasets, which con-
tains ∼3K fine-grained depth annotations with a length of
150 frames.
Challenges of variable long temporal context. Different
from image depth estimation which can determine the dis-
tribution of relative depth from a single frame, the video
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Figure 3. Inference for extremely long videos. We divide the
video into overlapped segments and estimate the depth sequences
for each segment with a noise initialization strategy to anchor the
scale and shift of depth distributions. These estimated segments
are then seamlessly stitched together with a latent interpolation
strategy to form the entire depth sequence. The overlapped frames
are denoted as oi and their interpolation weights are denoted as wi

and 1− wi, respectively.

depth estimation requires a long temporal context to ar-
range the depth distributions accurately for the entire video
and keep the temporal consistency. Besides, the model
should support variable-length estimation as the length of
open-world videos may vary significantly. However, exist-
ing open-source video diffusion models can only generate a
fixed small number of frames at a time, e.g., 25 frames in
SVD [3]. It is non-trivial to adapt the pre-trained model to
meet this requirement, as directly fine-tuning it with long
sequences is memory-consuming, for example, a modern
GPU with 40GB memory can only support the training of a
25-frame sequence in SVD.
Three-stage training. Considering both the two-style
paired datasets and the long temporal context requirement,
we design a three-stage training strategy to harvest the vari-
ety of video content, the precise depth details, as well as
the support for long and variable sequences. As shown
in Fig. 2, we train our DepthCrafter from the pre-trained
SVD in three stages. We first train it on our large realis-
tic dataset to adapt the model to the video-to-depth gener-
ation task. The sequence length in this stage is randomly
sampled from [1, 25] frames, such that the model can learn
to generate depth sequences with variable lengths. In the
second stage, we only fine-tune the temporal layers of the
model still on our large realistic dataset, with the sequence
length randomly sampled from [1, 110] frames. The reason
why we only fine-tune the temporal layers is that the tem-
poral layers are more sensitive to the sequence length while
the spatial layers are already adapted to the video-to-depth
generation task in the first stage, and doing so significantly
reduces memory consumption compared to fine-tuning the

full model. The long temporal context in this stage enables
the model to precisely arrange the entire depth distributions
for long and variable sequences. In the third stage, we fine-
tune the spatial layers of the model on our small synthetic
dataset, with a fixed sequence length of 45 frames since the
model has already learned to generate depth sequences with
variable lengths in the first two stages and tuning the spatial
layers would not affect the temporal context. As the depth
annotations in the synthetic dataset are more accurate and
fine-grained, the model can learn more precise depth details
in this stage. The three-stage training strategy makes our
DepthCrafter capable of generating high-quality depth se-
quences for open-world videos with variable lengths.

3.4. Inference for Extremely Long Videos

Although the model can estimate depth sequences up to the
length of 110 frames after training, it is still far from long
enough for open-world videos, which can even contain hun-
dreds or thousands of frames. To this end, we design an in-
ference strategy to infer extremely long depth sequences in
a segment-wise manner and seamlessly stitch them together
to form the entire depth sequence. As shown in Fig. 3,
we first divide the video into overlapped segments, whose
lengths are up to 110 frames. Then we estimate the depth
sequences for each segment. Rather than purely initializ-
ing the input latent with Gaussian noise ϵ ∼ N

(
0, σ2

maxI
)
,

we initialize the latent of the overlapped frames by adding
noise to the denoised latent from the previous segment, to
anchor the scale and shift of the depth distributions. Fi-
nally, to further ensure the temporal smoothness across seg-
ments, we craft a mortise-and-tenon style latent interpo-
lation strategy to stitch consecutive segments together, in-
spired by [74]. Specifically, we interpolate the latent of the
overlapped frames oi from the two segments with the inter-
polation weights wi and 1 − wi, respectively, where wi is
linearly decreased from 1 to 0. The final estimated depth se-
quence is obtained by decoding the stitched latent segments
with the decoder D in the VAE. With the training and infer-
ence strategies, our DepthCrafter can generate temporally
consistent long depth sequences for open-world videos.

4. Experiments
4.1. Implementation

We implemented our DepthCrafter based on SVD [3], using
the diffusers [58] library. We train our model at the resolu-
tion of 320 × 640 for efficiency, but we can estimate depth
sequences at any resolution, e.g., 576× 1024, during infer-
ence. We use the Adam optimizer [34] with a learning rate
of 1 × 10−5 and a batch size of 8. The number of itera-
tions in the three stages of training is 80K, 40K, and 10K,
respectively. We employed eight NVIDIA A100 GPUs for
training, with a total training time of about five days. We
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Method
Sintel (∼50 frames) Scannet (90 frames) KITTI (110 frames) Bonn (110 frames) NYU-v2 (1 frame)

AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

NVDS [63] 0.408 0.483 0.187 0.677 0.253 0.588 0.167 0.766 0.151 0.780
ChronoDepth [53] 0.587 0.486 0.159 0.783 0.167 0.759 0.100 0.911 0.073 0.941

Marigold [32] 0.532 0.515 0.166 0.769 0.149 0.796 0.091 0.931 0.070 0.946
Depth-Anything [67] 0.325 0.564 0.130 0.838 0.142 0.803 0.078 0.939 0.042 0.981
Depth-Anything-V2 [68] 0.367 0.554 0.135 0.822 0.140 0.804 0.106 0.921 0.043 0.978

DepthCrafter (Ours) 0.292 0.697 0.125 0.848 0.110 0.881 0.075 0.971 0.076 0.944

Table 1. Zero-shot relative depth estimation results. We compare with the best single-image depth estimation model, Marigold [32], and
Depth Anything (V2) [67, 68], as well as the representative video depth estimation models, NVDS [63] and ChronoDepth [53]. Best and
second best results are highlighted.

also adopt the classifier-free guidance [20] to improve the
details of the generated depth sequences. The number of
denoising steps is set to 25 for all experiments.

4.2. Evaluation

Evaluation datasets. We evaluate our model on four video
datasets, a single-image dataset, as well as the DAVIS
dataset [45] and in-the-wild videos for qualitative results.
All the evaluation videos were not included in our training
process. Sintel [6] is a synthetic dataset with precise depth
labels, featuring dynamic scenes with diverse content and
camera motion. It contains 23 sequences with the length of
around 50 frames each in the training set. ScanNet v2 [11]
is an indoor dataset with depth maps obtained from a Kinect
sensor. For evaluation purposes, we employed the test set,
which includes 100 RGB-D video sequences of various
scenes. We extracted 90 frames from each sequence at a rate
of 15 frames per second. Since ScanNet v2 contains only
static indoor scenes, we further introduced 5 dynamic in-
door RGB-D videos with a length of 110 frames each from
the Bonn [43] dataset to better evaluate the performance of
our model on dynamic scenes. KITTI [18] is a street-scene
outdoor dataset for autonomous driving, with sparse metric
depths captured by a LiDAR sensor. We adopted the valida-
tion set, which includes 13 scenes, and extracted 13 videos
from it with a length of 110 frames each. Besides, we also
evaluated our model for single-image depth estimation on
the NYU-v2 [54] dataset, which contains 654 images in the
test split. These datasets cover a wide range of scenes, in-
cluding synthetic and realistic scenes, indoor and outdoor
scenes, and static and dynamic scenes, to evaluate the gen-
eralization ability of our model across various open-world
scenarios.
Evaluation metrics. Following conventional practice in
relative depth estimation [13, 32, 67, 68], we align the es-
timated depth maps with the ground truth using a scale
and shift before calculating the metrics. Different from
previous methods that optimize the scale and shift indi-
vidually for each frame, we optimize a shared scale and
shift across the entire video, which is more challenging
but necessary for video depth estimation to ensure tempo-

ral consistency. We calculate two metrics: AbsRel ↓ (ab-
solute relative error: |d̂ − d|/d) and δ1 ↑ (percentage of
max(d/d̂, d̂/d) < 1.25), which are widely used in the lit-
erature [13, 32, 67, 68].

Quantitative results. We compare our DepthCrafter
with the representative methods for both single-image
and video depth estimation, i.e. Marigold [32], Depth-
Anything [67], Depth-Anything-V2 [68], NVDS [63], and
ChronoDepth [53]. As shown in Tab. 1, our DepthCrafter
achieves state-of-the-art performance in all four video
datasets, thanks to the powerful open-world video und-
ederstanding capability of the video diffusion models and
the three-stage training strategy that leverages both realis-
tic and synthetic datasets. For Sintel and KITTI, charac-
terized by significant camera motion and fast-moving ob-
jects, our DepthCrafter outperforms the previous strongest
Depth-Anything (V2) model tremendously in terms of both
the AbsRel and δ1 metrics, e.g. (0.697 − 0.564)/0.564 =
23.6% improvement in δ1 on Sintel. For indoor datasets
like Scannet and Bonn, featuring minimal camera motion
and roughly the same room scales, Depth-Anything has
exhibited strong performance. Nevertheless, we still have
some performance enhancements over Depth-Anything,
e.g. (0.130 − 0.125)/0.130 = 3.8% improvement in Ab-
sRel on Scannet. Note that the sequence length of these
datasets varies from 50 to 110 frames, and our model can
generalize well across different video lengths.

Qualitative results. To further demonstrate the effective-
ness of our model, we present the qualitative results on
video depth estimation from the DAVIS dataset [45], Sora
generated videos [5], and open-world videos, including hu-
man actions, animals, architectures, cartoons, and games,
where the sequence length varies from 90 to 195 frames.
As shown in Fig. 4, we show the temporal profiles of the
estimated depth sequences in the red line position by slic-
ing the depth values along the time axis, to better visualize
the temporal consistency of the estimated depth sequences,
following the practice in [25, 63]. We can observe that
our DepthCrafter can produce temporally consistent depth
sequences with fine-grained details across various open-
world videos, while both NVDS and Depth-Anything ex-
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1

Input	video Depth-Anything-V2 DepthCrafter	(Ours)NVDS

Figure 4. Qualitative comparison for open-world video depth estimation. We compare with the representative single-image depth estimation
method Depth-Anything-V2 [68] and the video depth estimation method NVDS [63]. For better visualizing the temporal quality, we show
the temporal profiles of each result in red boxes, by slicing the depth values along the time axis at the red line positions.

hibit zigzag artifacts in the temporal profiles, indicating the
flickering artifacts in the estimated depth sequences. These
results demonstrate the effectiveness of our DepthCrafter in
generating temporally consistent long depth sequences with
high-fidelity details for open-world videos.

Single-image depth estimation. Although our model is
designed for video depth estimation, it can also perform
single-image depth estimation, as our DepthCrafter can es-
timate video depth of any length. As shown in Tab. 1, our
DepthCrafter achieves competitive performance in single-
image depth estimation on the NYU-v2 dataset. Since the
depth labels in the NYU-v2 dataset are sparse and noisy, we
also provide the qualitative results in Fig. 5 to demonstrate
the effectiveness of our model in estimating depth maps
from static images. We can observe that our DepthCrafter

can even produce more detailed depth maps than Depth-
Anything-V2, which is the existing state-of-the-art single-
image depth estimation model. These results demonstrate
the ability of our DepthCrafter for processing both video
and single-image depth estimation tasks.

4.3. Ablation Studies

Effectiveness of the three-stage training strategy. We
first ablate the effectiveness of the three-stage training strat-
egy by evaluating the performance of our model at the end
of each stage on the Sintel dataset [6], since it contains pre-
cise depth annotations on dynamic scenes. From Tab. 2,
we can observe that the performance of our model almost
improves as the training progresses, indicating the effec-
tiveness of the three-stage training strategy. Although the
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1

Input	image Depth-Anything-V2 DepthCrafter	(Ours)
Figure 5. Results on depth estimation from static images. We com-
pare with the representative single-image depth estimation method
Depth-Anything-V2 [68].

stage 1 stage 2 stage 3

AbsRel ↓ 0.323 0.336 0.292
δ1 ↑ 0.625 0.673 0.697

Table 2. Ablation study on the Sintel dataset. We evaluate the
performance of our model at the end of different stages of training.

AbsRel metric slightly increases in stage 2, the δ1 metric
consistently improves, and stage 2 is essential for support-
ing the long temporal context up to 110 frames.
Effectiveness of the inference strategy. To ablate the ef-
fectiveness of our inference strategy components, we con-
sider these variants: baseline, which independently infers
each segment and directly averages the overlapped frames;
+ initialization, which contains the same initialization of
overlapped latents as our method, but without the stitch-
ing process; + initialization & stitching, which is our full
method. We visually compare the temporal profiles of the
estimated depth sequences of these variants in Fig. 6. We
can observe the overlapped jaggies in both the static re-
gions (pointed by the yellow arrow) and the dynamic re-
gions (pointed by the green arrow) in temporal profiles of
the “baseline” method, which indicates the flickering arti-
facts. The “+ initialization” method can alleviate the flick-
ering artifacts in the static regions, but still has jaggies in the
dynamic regions, while our full method can produce smooth
depth sequences in both static and dynamic regions.

4.4. Applications

Our DepthCrafter can facilitate various downstream appli-
cations, e.g., foreground matting, depth slicing, fog effects,
and depth-conditioned video generation, by providing tem-
porally consistent depth sequences with fine-grained details
for open-world videos. We show example results of fog
effects and depth-conditioned video generation in Fig. 7,
while more visual effects results are available in our web-
site. For the fog effect, we blend the fog map with the
input video frames based on the depth values to simulate
varying transparency levels in fog. And many recent con-
ditioned video generation models [9, 15, 19, 75] employ
depth maps as the structure conditions for video genera-

baseline

+	initialization

+	initialization	&	stitching

First	frame

Last	frame

⋯

Figure 6. Ablation studies on the effectiveness of the inference
strategy. We profile the estimated depth sequences of different
variants on the red line position. The yellow and green arrows
point to the static and dynamic regions, respectively.

In
pu
t
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d	f
og

Vi
de
o	g
en
.

Figure 7. Examples of visual effectiveness that could benefit
from our DepthCrafter, including adding fog effects and depth-
conditioned video generation. More visual effects results are avail-
able on our website.

tion or editing. We adopt Control-A-Video [9] and video
depth of our method as conditions to generate a video with
prompts “a rider walking through stars, artstation”. The
visual effects of these applications rely heavily on the ac-
curacy and consistency of the video depth, which demon-
strates the wide applicability of our DepthCrafter in various
downstream tasks.

5. Conclusion
We present DepthCrafter, a novel method for open-world
video depth estimation by leveraging video diffusion mod-
els. It can generate temporally consistent depth sequences
with fine-grained details for video width diverse content,
motion, and camera movement, without requiring any ad-
ditional information. It also supports videos of variable
lengths, ranging from one frame (static image) to extremely
long videos. This is achieved through our meticulously de-
signed three-stage training strategy, compiled paired video-
depth datasets, and an inference strategy. Extensive evalu-
ations have demonstrated that DepthCrafter achieves state-
of-the-art performance in open-world video depth estima-
tion under zero-shot settings. It also facilitates various
downstream applications, including depth-based visual ef-
fects and conditional video generation. There are still some
limitations to be addressed in the future, such as the ex-
pensive computation and memory cost, which is due to the
large model size and the iterative denoising process in the
diffusion model.
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